How Bartter's and Gitelman's syndromes, and Dent's disease have provided important insights into the function of three renal chloride channels: ClC-Ka/b and ClC-5.

نویسندگان

  • Marie Briet
  • Rosa Vargas-Poussou
  • Stephane Lourdel
  • Pascal Houillier
  • Anne Blanchard
چکیده

Chloride channels are expressed in almost all cell membranes and are potentially involved in a wide variety of functions. The kidney expresses 8 of the 9 chloride channels of the ClC family that have been cloned so far to date in mammals. This review focuses on the pathophysiology of two renal disorders that have contributed recently to our understanding of the physiological role of chloride channels belonging to the ClC family. First are the related syndromes of Bartter's and Gitelman's, in which inactivating mutations of the genes encoding either of the ClC-Ks, or their regulatory beta-subunit barttin, have shown the important contribution of these chloride channels to renal tubular sodium and chloride (NaCl) transport along the loop of Henle and distal tubule. Second is the renal Fanconi syndrome known as Dent's disease, in which ClC-5 disruption has revealed the key role of this endosomal chloride channel in the megalin-mediated endocytotic pathway in the proximal tubule. The underlying pathophysiology of this inherited disorder demonstrates how ClC-5 is directly or indirectly required for the reabsorption of filtered low-molecular-weight proteins and bioactive peptides, also expression of membrane transporters, and clearance of calcium-based stone-forming crystals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ClC chloride channels in epithelia: recent progress and remaining puzzles.

ClC chloride channels are widely expressed in epithelia. Recent insights into the roles of specific ClC channels have emerged from molecular and immunolocalization studies, mouse knockout models, and the linkage of mutations of these channels to the human hereditary diseases Bartter's syndrome and Dent's disease.

متن کامل

Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: pathophysiological implications.

Cl(-) channels play important roles in the regulation of a variety of functions, including electrical excitability, cell volume regulation, transepithelial transport and acidification of cellular organelles. They are expressed in plasma membranes or reside in intracellular organelles. A large number of Cl(-) channels with different functions have been identified. Some of them are highly express...

متن کامل

A Cytoplasmic Domain Mutation in ClC-Kb Affects Long-Distance Communication Across the Membrane

BACKGROUND ClC-Kb and ClC-Ka are homologous chloride channels that facilitate chloride homeostasis in the kidney and inner ear. Disruption of ClC-Kb leads to Bartter's Syndrome, a kidney disease. A point mutation in ClC-Kb, R538P, linked to Bartter's Syndrome and located in the C-terminal cytoplasmic domain was hypothesized to alter electrophysiological properties due to its proximity to an imp...

متن کامل

Chloride transport in the kidney: lessons from human disease and knockout mice.

Knockout mouse models and human inherited diseases have provided important new insights into the physiologic role of chloride transport by CLC Cl(-) channels and KCC K-Cl co-transporters. ClC-K/barrtin Cl(-) channels are important for renal salt reabsorption and possibly for acid secretion by intercalated cells. The endosomal ClC-5 protein is crucial for proximal tubular endocytosis. Its disrup...

متن کامل

Molecular determinants of differential pore blocking of kidney CLC-K chloride channels.

The highly homologous Cl(-) channels CLC-Ka and CLC-Kb are important for water and salt conservation in the kidney and for the production of endolymph in the inner ear. Mutations in CLC-Kb lead to Bartter's syndrome and mutations in the small CLC-K subunit barttin lead to Bartter's syndrome and deafness. Here we show that CLC-Ka is blocked by the recently identified blocker 2-(p-chlorophenoxy)-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nephron. Physiology

دوره 103 1  شماره 

صفحات  -

تاریخ انتشار 2006